4,453 research outputs found

    Liquid-gas Phase Transition in Strange Hadronic Matter with Weak Y-Y Interaction

    Full text link
    The liquid-gas phase transition in strange hadronic matter is reexamined by using the new parameters about the ΛΛ\Lambda - \Lambda interaction deduced from recent observation of ΛΛ6He^{6}_{\Lambda\Lambda}He double hypernucleus. The extended Furnstahl-Serot-Tang model with nucleons and hyperons is utilized. The binodal surface, the limit pressure, the entropy, the specific heat capacity and the Caloric curves are addressed. We find that the liquid-gas phase transition can occur more easily in strange hadronic matter with weak Y-Y interaction than that of the strong Y-Y interaction.Comment: 10 pages, 7 figure

    Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled to superconducting resonators

    Full text link
    We propose a potentially practical scheme to simulate artificial Abelian gauge field for polaritons using a hybrid quantum system consisting of nitrogen-vacancy center ensembles (NVEs) and superconducting transmission line resonators (TLR). In our case, the collective excitations of NVEs play the role of bosonic particles, and our multiport device tends to circulate polaritons in a behavior like a charged particle in an external magnetic field. We discuss the possibility of identifying signatures of the Hofstadter "butterfly" in the optical spectra of the resonators, and analyze the ground state crossover for different gauge fields. Our work opens new perspectives in quantum simulation of condensed matter and many-body physics using hybrid spin-ensemble circuit quantum electrodynamics system. The experimental feasibility and challenge are justified using currently available technology.Comment: 6 papes+supplementary materia

    Effects of Different Harvest Times on the Maturity of Polyphenols in Two Red Wine Grape Cultivars (Vitis vinifera L.) in Qingtongxia (China)

    Get PDF
    Due to the special climate conditions in the Qingtongxia region, grapes are high in sugar and low in titratable acidity from the stages of ripening. Therefore, the common methods used for determining the maturity of grapes, which depend on the ratio of sugar and titratable acidity in other regions, are inappropriate in Qingtongxia. This research was done in order to seek for a simple and convenient method of determining the optimal harvest time of grapes, further providing some theoretical basis for improving the quality of wine in Qingtongxia. Phenolic contents and some basic physico-chemical parameters of Merlot and Pinot Noir were evaluated during different ripening stages. The results showed that a different harvest time significantly affects the phenolic contents and physico-chemical parameters of Merlot and Pinot Noir.  The total contents of anthocyanins in skins and total contents of phenolic in seeds was screen out as two important indexes to evaluate the maturity of polyphenols, in order to better improve the quality of grape and wine

    Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes

    Get PDF
    The procedures for the synthesis of polypyrrole (PPy) doped with anionic spherical polyelectrolyte brushes (ASPB) (PPy/ASPB nanocomposite) by means of in situ chemical oxidative polymerization were presented. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopic analysis suggested the bonding structure of PPy/ASPB nanocomposite. Scanning electron microscopy (SEM) was used to confirm the morphologies of samples. The crystallographic structure, chemical nature and thermal stability of conducting polymers were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Thermo-gravimetric analysis (TGA) respectively. Investigation of the electrical conductivity at room temperature showed that the electrical conductivity of PPy/ASPB nanocomposite was 20 S/cm, which was higher than that of PPy (3.6 S/cm)

    AutoDeconJ: a GPU accelerated ImageJ plugin for 3D light field deconvolution with optimal iteration numbers predicting

    Full text link
    Light field microscopy is a compact solution to high-speed 3D fluorescence imaging. Usually, we need to do 3D deconvolution to the captured raw data. Although there are deep neural network methods that can accelerate the reconstruction process, the model is not universally applicable for all system parameters. Here, we develop AutoDeconJ, a GPU accelerated ImageJ plugin for 4.4x faster and accurate deconvolution of light field microscopy data. We further propose an image quality metric for the deconvolution process, aiding in automatically determining the optimal number of iterations with higher reconstruction accuracy and fewer artifact

    Non-collinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7

    Get PDF
    The Co2V2O7 is recently reported to exhibit amazing magnetic field-induced magnetization plateaus and ferroelectricity, but its magnetic ground state remains ambiguous due to its structural complexity. Magnetometry measurements, and time-of-flight neutron powder diffraction (NPD) have been employed to study the structural and magnetic properties of Co2V2O7, which consists of two non-equivalent Co sites. Upon cooling below the Ne\'el temperature TN = 6.3 K, we observe magnetic Bragg peaks at 2K in NPD which indicated the formation of long range magnetic order of Co2+ moments. After symmetry analysis and magnetic structure refinement, we demonstrate that Co2V2O7 possesses a complicated non-collinear magnetic ground state with Co moments mainly located in b-c plane and forming a non-collinear spin-chain-like structure along the c-axis. The ab initio calculations demonstrate that the non-collinear magnetic structure is more stable than various ferromagnetic states at low temperature. The non-collinear magnetic structure with canted up-up-down-down spin configuration is considered as the origin of magnetoelectric coupling in Co2V2O7 because the inequivalent exchange striction induced by the spin-exchange interaction between the neighboring spins is the driving force of ferroelectricity. Besides, it is found that the deviation of lattice parameters a and b is opposite below TN, while the lattice parameter c and stay almost constant below TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.Comment: 9 pages, 8 figure

    Attacking practical quantum key distribution system with wavelength dependent beam splitter and multi-wavelength sources

    Full text link
    Unconditional security of quantum key distribution protocol can be guaranteed by the basic property of quantum mechanics. Unfortunately, the practical quantum key distribution system always have some imperfections, and the practical system may be attacked if the imperfection can be controlled by the eavesdropper Eve. Applying the fatal security loophole introduced by the imperfect beam splitter's wavelength dependent optical property, we propose wavelength-dependent attacking model, which can be applied to almost all practical quantum key distribution systems with the passive state modulation and photon state detection after the practical beam splitter. Utilizing our attacking model, we experimentally demonstrate the attacking system based on practical polarization encoding quantum key distribution system with almost 100% success probability. Our result demonstrate that all practical devices require tightened security inspection for avoiding side channel attacks in practical quantum key distribution experimental realizations
    corecore